

Artificial Intelligence-Based Nutrition and Workout Optimization System

A. Thenmozhi

Department of Artificial Intelligence and Data Science, Dhaanish Ahmed College of Engineering, Padappai, Chennai, Tamil Nadu, India

T. Shynu

Dhaanish Ahmed College of Engineering, Padappai, Chennai, Tamil Nadu, India

M. Mohamed Sameer Ali, S. Suman Rajest

Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India

Abstract: A well-planned diet and exercise plan are the most important things for getting and keeping good health, good physical performance, and the body shape, you want. This thorough report brings together up-to-date scientific studies and useful information about nutrition and exercise programs, with a focus on making them fit each person's needs and goals. The paper presents evidence-based strategies based on the principles of macronutrient modification, nutrient timing, progressive overload, and recovery optimisation, applicable to goals such as fat loss, muscle growth, increased athletic performance, or improved overall wellbeing. Key parts look at how proteins, carbs, and fats can help with different training goals, how different types of exercise affect the body, and how important it is to have consistent, goal-aligned behaviours. The research also talks about the psychological and environmental aspects that affect how well people stick to their diets and exercise plans, and it gives suggestions for ways to make these changes last. One thing that makes this study stand out is that it uses OpenAI's language models to help in writing, editing, and personalising content. This not only makes it easier and faster to make reports, but it also makes sure that they are clear, consistent, and in line with current scientific literature. The language model is used to make high-quality, personalised assistance that is useful for individuals, coaches, and researchers alike. This is done through purposeful prompts and iterative improvement. In the end, this study is a useful and smart guide for making the best food and exercise routines for a wide range of health and fitness goals.

Keywords: Desirable Body Composition; Physical Performance; Optimal Health; Different Training Outcomes; Current Scientific Literature; Evidence-Based Methodologies.

Introduction

This report's main purpose is to make the complicated relationship between nutrition and exercise easier to understand by presenting ideas in a clear and easy-to-understand way. Both nutrition and exercise are powerful on their own, but when they are combined, they can help you reach and keep your health goals [38]. A coordinated approach is necessary whether you want to grow lean muscle mass, improve your cardiovascular fitness, lose fat, or boost your general health. At its most basic level, nutrition gives the body the energy and building blocks it needs to work, heal, and change. Calories give the body the energy it needs to do all of its functions, while macronutrients like proteins, carbs, and fats have particular jobs in repairing muscles,

making energy, and making hormones [58]. Micronutrients are just as important for cellular function, enzyme activity, and immunological defence, even though they are needed in lesser amounts [51]. Hydration is also very important for metabolism, thermoregulation, and performance. Not getting enough nutrients or making bad dietary choices can really slow down training and recuperation [75].

Exercise, on the other hand, gives the body the physical stimuli it needs to adapt. For instance, resistance training makes muscles bigger and stronger, while aerobic training makes the heart and lungs work better and helps the body burn more calories. The specific adjustments are based on things like how hard, how often, and how much you train [45]. However, these changes are restricted without enough nutrients, especially protein for muscle repair and carbs for energy. Exercise also makes you need to recover, which you may do by resting, sleeping, and eating the right foods. This research stresses customisation as a key idea [67]. There are general rules for how many calories to eat, how much of each macronutrient to eat, and how often to train, but the best results come when these things are customised for each person. Age, sex, body composition, metabolic rate, lifestyle, interests, and even psychological preparation are all very important in deciding which method is both successful and long-lasting [59]. A young athlete getting ready for a competition might need to workout and eat a lot of calories and food. Conversely, a sedentary person aiming for fat loss will gain from a more moderate and organised approach.

Another important idea that the paper talks about is behavioural sustainability [50]. Even the best scientific plan won't work if you don't stick to it. In this context, tactics that encourage adherence, like meal prepping, flexible dieting, habit tracking, and setting realistic goals, are spoken about. Mental health and stress management also play a big influence in defining motivation, willpower, and physiological reactions like cortisol levels, which determine how much fat is stored and how much muscle is kept [35]. In today's world, technology plays a bigger and bigger role in planning fitness and diet. Wearable devices, tracking apps, and digital health platforms let you make decisions based on facts, which makes you more responsible and accurate [74]. One of the most important things about this report is that it looks at how AI, specifically OpenAI's language models, can be used to help with program development. AI integration makes it easier to make personalised, flexible plans by making it easier to make bespoke workout splits and food plans that take into account dietary limitations [57]. These tools not only make things easier for coaches and professionals, but they also provide people the power to make smart choices without needing to know a lot about the issue.

This report covers a number of important areas. The nutrition part talks about how to distribute macronutrients for different goals, the importance of fibre and water, when to eat for performance and recovery, and how to use supplements that are founded on science. The workout part goes into detail about training splits, resistance vs. cardio programming, progressive overload principles, and de-loading tactics [44]. People who are just starting out, older folks, or have medical concerns are also taken into account, and the guidelines are changed to make them safer and more effective. Finally, the study ends with useful templates and examples that readers may use right away to put the ideas into action. The goal is to put theory into practice, whether that means making a diet plan that fits a 2,000 kcal fat-loss target, making a workout program that focusses on hypertrophy, or figuring out how much protein you need to recover [53]. In short, this study is both a basic guide and an advanced reference. It combines the most recent scientific information with practical examples. It emphasises how diet and exercise are connected and encourages a personalised, long-term strategy [68]. This makes it a great tool for everyone who wants to improve their health, performance, and quality of life.

Problem Statement

Health and wellbeing have grown more important in recent years, yet many people still have trouble sticking to a regular diet and exercise plan. There are a lot of online fitness programs, diet charts, and mobile apps, but they don't always satisfy the needs of their consumers [54]. Most solutions are general, fixed, and don't have the flexibility to take into account the differences in a person's lifestyle, body type, health issues, and personal preferences. Everyone has their own physical and mental characteristics that affect how they respond to different types of exercise and diets. But most of the time, the tools that most people use don't give people the level of personalisation they need to deal with these disparities. People who have allergies, dietary limitations, certain medical issues, or special fitness goals, like losing weight, gaining muscle, or increasing endurance, sometimes have to use rigid templates [39]. This makes them frustrated, slows their progress, and eventually makes them lose interest. Professional coaching services are hard to get and expensive, which makes this problem much worse. Certified trainers and nutritionists can provide you personalised advice, but not everyone has the time or money to work with them all the time [66]. This creates a big hole in the health and wellness ecosystem: people are supposed to make smart, disciplined choices about their health without the tailored help that makes those changes last.

The suggested project intends to use artificial intelligence to make a highly customised, interactive tool for planning fitness and diet. This is because there is a gap between what people want and what they need. The app will leverage AI technologies like the Groq model for intelligent response generation and Streamlit for a smooth user interface to operate as a virtual assistant that makes workout and nutrition regimens that fit each user's profile. This method is meant to close the gap between expert-level customisation and everyday use [49]. It offers a flexible, inexpensive, and very accessible alternative to traditional coaching. With this initiative, users will have more confidence, clarity, and consistency in their fitness pursuits [73]. It doesn't just want to provide you a one-time plan; it wants to be a long-term partner in your journey to health and wellness. What makes this project unique is that it combines advanced AI with design that focusses on people. This makes a platform that learns from user input and changes over time. The technology makes sure that users aren't left alone to figure out complicated routines or nutritional terms by giving them an interactive interface that seems like a real discussion [43]. Instead, customers get clear, actionable advice that changes as they move forward and give feedback. This ongoing cycle of input, response, and improvement turns a static plan into a dynamic experience. This not only keeps users interested, but it also encourages long-term behavioural change. In this way, the project changes the way personalised wellness advice may be given—by making it scalable, smart, and very aware of each person's needs [65].

Objective

The purpose of this project is to make a Fitness and Diet Planner that uses AI to give people customised, smart help as they work towards different health and wellness goals [52]. The system aims to fill the gap between generic fitness regimens and costly expert coaching by providing plans that are flexible, adjustable, and tailored to each user. This project seeks to make a complete digital wellness assistant that works with each person's unique profile by using Groq's llama-3.3-70b-versatile language model and a Streamlit user interface that works perfectly [40]. The planner's main job is to make personalised fitness and meal plans based on a lot of different user inputs. Some of the most important inputs are fitness goals (such as losing fat, gaining muscle, or improving endurance), age, gender, dietary preferences, allergies, pre-existing health problems, and current body composition [69]. The AI model will use this information to come up with strategies that are not only effective but also long-lasting, taking into account each user's lifestyle and restrictions.

This software will be interactive and adaptable, unlike static web templates. Users will be able to improve their plans in real time through a built-in chat interface [48]. This interface will work like virtual personal coaching, answering questions, clearing up confusion, and changing

suggestions based on what users say. The system will provide detailed, context-aware support right away, whether a user wants help tweaking their workout split, eating plan, or understanding why a certain advice was made [36]. Another important goal is to make health and fitness advice available to more people by reducing the need for expensive subscriptions or professional consultations. This AI-powered solution wants to be a trustworthy and cheap option for people who can't get individualised coaching [55]. It will also encourage self-reliance and learning by helping users comprehend the reasons behind each action, which will lead to long-term commitment and better behaviours. The project's ultimate goal is to produce a solution that gives users more power, makes decisions easier, and helps them reach their fitness goals in a realistic and informed way by integrating advanced language modelling with intelligent interface design.

Scope and Motivation

This project includes the research, design, development, and deployment of a fully working AI-based software for customised diet and fitness planning. It is all about developing a user-centred platform that employs AI to make tailored recommendations and a conversational interface to give users constant help [71]. The project will employ Groq's llama-3.3-70b-versatile model to read user inputs, look at the context, and provide back information that is very accurate and useful. The language model will be the engine that makes decisions about all the material that is made, whether it's a diet plan for a vegetarian diabetic user or a full-body workout plan for a beginner with little equipment [46]. Streamlit will be used to build the front end of the system. Streamlit has a clean, engaging, and responsive interface that is easy to use, even for people who aren't tech-savvy. The software will collect information about each user, such as their fitness objectives, current physical metrics, nutritional preferences, allergies, health concerns, and lifestyle habits. Make and show personalised training and diet regimens.

Let consumers talk to the AI using a chat-based system to get answers to their questions, make changes to their plans, and get encouraging suggestions. If it is integrated, offer weekly or monthly check-in support to help keep track of progress [61]. Give users information about how to balance their macronutrients, stay hydrated, take supplements, and recuperate according on their goals. Be able to adapt to changes in user goals, progress, and feedback over time. But the scope is confined to general wellness advice that isn't medical. The tool is not meant to take the place of medical or qualified dietetic advice for people with complicated medical histories. The system may consider general health issues like obesity, diabetes, or high blood pressure, but it will not be able to diagnose or cure these problems [64]. The project could grow in the future to include features like: Integration with wearable devices for tracking activities in real time. Dashboards that provide data on weight, nutrition, and exercise to help you keep track of your progress. Feedback loops based on machine learning enable wiser plan evolution over time [41]. In short, our project aims to create a strong, smart, and easy-to-use app that makes it easier for users to take care of their health by giving them expert-level advice at a low, easy-to-reach price. It strikes a mix between being new and useful, which makes it appealing to both tech-savvy people and people who are generally health-conscious.

Existing System

Most of the time, fitness and diet-planning tools fall into one of two main groups: generic web tools and expert consultation services. These methods can help in different ways, but they often don't address the specific and complicated needs of each person. The route to fitness and wellbeing is very individualised and depends on things like your age, gender, body type, lifestyle, health problems, and personal goals. But most current systems take a one-size-fits-all approach, which leads to a bad user experience and low long-term compliance [56]. A lot of people use generic internet tools like mobile apps and websites since they are cheap and easy to use. Most of the time, these systems provide you regular diet and activity regimens based on a little amount of information, including your age, gender, and general fitness goals. These tools can be beneficial for people who are just starting out, but they don't always take into consideration individual dietary needs, medical issues, or personal tastes. Because of this,

consumers often get plans that are too strict and don't take into account their real-world limitations or changing needs [62]. This lack of change can make people less likely to stick with the program, lose motivation, and even give up on it altogether.

Professional consulting services, including those supplied by licensed nutritionists, dietitians, and personal trainers, do give you personalised advice and expert recommendations [37]. These services look at a lot of different things and make strategies that are usually more accurate and long-lasting. But these kinds of services are sometimes too expensive and take too long, which makes them hard to get for a lot of people, especially students, working adults, or those who live in distant or neglected areas. Also, these services generally need users to come in person or set up virtual appointments more than once, which might not be possible for people with busy schedules or who can't easily get to professionals [60]. In the last few years, a lot of platforms have tried to use AI to help people plan their exercise and nutrition, but these efforts have mostly been limited. AI can automate some parts of making plans or give general advice, but most existing systems don't allow for dynamic personalisation or real-time engagement [72]. People can't often talk to these systems, ask questions that are relevant to the situation, or get better suggestions based on new information.

Because these platforms aren't very interactive, they don't do a good job of keeping people interested, informed, and inspired [63]. Also, many of the current systems have user interfaces that are either too complicated or not deep enough. Users can get overwhelmed by interfaces that are too cluttered or not well-organised, while platforms that are too simple may not provide useful insights, progress monitoring, or accountability tools [47]. In all circumstances, consumers can't stay consistent, keep track of their progress, or change their plans when they need to since the design isn't responsive or easy to use. Users are more likely to lose interest and not reach their fitness and health goals if they don't get regular help or feedback [70]. The existing system landscape shows that there is a big gap between what users want and what is accessible. There are a lot of tools and services available, but not many of them get the right mix of personalisation, accessibility, affordability, and interactivity [42]. This gap shows how important it is to have a smart, affordable, and easy-to-use platform that not only makes personalised plans but also changes as the user's journey goes on. The proposed project intends to create a full AI-powered solution that combines the best of professional advice and new technology to make customised health and exercise planning truly available to everyone by fixing these problems.

Literature Survey

Chauhan et al. [1] used decision tree algorithms to handle user-specific information such as age, weight, nutritional preferences, and exercise goals. The study showed that decision trees are great for making structured plans since they are easy to understand and accurate. It also showed how important personalising is for getting users to stick with their plans. Parmar et al , [2] looked at how well chatbots work for giving real-time feedback and getting people involved in fitness and health planning. The study used natural language processing (NLP) techniques to show that conversational interfaces greatly enhance the user experience by dynamically answering questions [5]. This fits with the project's goal of adding an interactive conversation feature to help people improve their diet and fitness routines.

Chauhan et al, [3] talked about how feature selection can make AI models more accurate. They employed algorithms like recursive feature elimination (RFE) to rank inputs, such as health problems and dietary constraints. Their findings showed that well-chosen attributes lead to more useful and relevant recommendations that may be used right away for tailored exercise planning. Parmar et al , [4] evaluated the use of lightweight AI frameworks for constructing accessible health applications. The study showed that adopting platforms like Streamlit to make interfaces easier to use can help non-technical users accept them more quickly [30]. This information backs up the project's choice to use Streamlit to make a user-friendly interface for planning fitness and diet [6].

Diagrams

The paper contains important demographic and physiological factors like age, gender, height, weight, and amount of physical activity right now [22]. Users also give a lot of information about their fitness goals, such as losing weight, gaining muscle, or improving endurance. They also tell us about their dietary preferences (vegetarian, high-protein, low-carb, etc.), any health problems they already have, food allergies, and lifestyle factors like their daily schedule, meal timing preferences, and sleep habits [12]. The whole suggestion engine is built on these inputs, thus it's very important that they are accurate and full at this point in order to make useful plans. After the input data is collected, it goes to the Data Pre-processing phase [34].

This step is in charge of cleaning, checking, and arranging raw data to make sure it is in a format that can be used [29]. Data type validation, dealing with missing or inconsistent values, and standardising units (such changing all weights to kilogrammes and all heights to centimetres) are all part of pre-processing. Normalisation procedures are used to make sure that numerical values are within an acceptable range [9]. This makes processing easier in later stages. By getting rid of any differences that could change the suggestions, this stage makes sure that the data is correct and makes the output more reliable overall [17]. The technology generates a strong dataset that is suitable for meaningful interpretation by cleaning and standardising the data.

After the data has been cleaned up, the refined inputs move on to the User Profiling stage. This is where basic physiological measurements are taken and used to construct a dynamic profile that is specific to the person's body type and way of life [20]. There are well-known formulas, such the Mifflin-St Jeor Equation, that are used to figure out things like Basal Metabolic Rate (BMR) and Total Daily Energy Expenditure (TDEE). These numbers give you important information about how many calories a person needs each day based on their resting metabolism and activity level. At the same time, the user's goal—losing weight, gaining muscle, or keeping it off—is used to figure out the macronutrient ratios (protein, carbs, and fats) [23]. Additional profile looks at things like nutrient deficits, desired workout intensity, and how well someone can recover. This thorough examination makes sure that the strategies made are biologically sound, take into account the user's situation, and are designed to help them succeed [14]. The next step is to submit the structured, context-rich dataset to the OpenAI Language Model. In this example, that would be a high-performance LLM like Groq's llama-3.3-70b-versatile. The model uses its vast knowledge base and ability to understand plain language to figure out what the user needs and make very specific diet and exercise suggestions [31].

The AI model combines pre-processed information with evidence-based nutrition and fitness concepts to make personalised daily meal plans, macronutrient splits, training routines, cardio schedules, supplement suggestions, and recuperation guidelines[8]. The system can adapt to different needs, including giving vegetarians plant-based options or suggesting home workouts for people who can't go to the gym [26]. The model can respond in natural language, which means it can explain why it made its suggestions, change plans on the fly based on user feedback, and keep the discussion going the whole time. The suggestions move on to the Plan Generation and Output Delivery step as the AI model makes the outputs [16]. The blueprints are set up here so that they can be easily read and understood by users through a Streamlit-built front-end interface. Users get well-organised, interactive content that includes meal plans, daily routines, and exercise specifics.

The interactive chat interface also lets users ask questions, ask for changes, and give feedback in real time, which can help improve the results. When this feedback loop is added, it might start a new input-processing cycle, which lets the system grow and becoming more personalised over time [11]. This data flow structure shows how user input, smart data management, physiological profile, and AI-powered suggestion generation all work together to make a personalised and responsive exercise and diet planning platform [24]. The system combines accuracy with customisation to create a scalable, efficient, and highly adaptable solution to the problems with current fitness tools and services [19]. It does this by making personalised fitness regimens, meal

ideas, and supplement recommendations based on the user's profile. In the Results Analysis phase, these outputs are checked for personalisation and coherence. Lastly, User Feedback and Engagement Metrics are used to measure how well the system works, finishing the process of turning raw data into smart exercise and nutrition advice [33].

Architecture diagram

The diagram shows the whole process of an AI-powered fitness and diet planning system, from collecting data to making customised suggestions. The first step is to collect user data [10]. This is made easier with an easy-to-use, interactive user interface that encourages people to give accurate and comprehensive information. This first step of entering data is very important since the plans that are made will only be as good as the data that goes into them. During this stage, individuals are asked to provide information about themselves and their fitness [28]. Some of the most important data pieces include training goals (such losing fat, gaining muscle, improving endurance, or just becoming fit), dietary choices (like being vegetarian, vegan, keto, high-protein, or low-carb), and demographic information like age, gender, and activity level [18]. Users are also requested to give their current weight and target weight, as well as any health problems like diabetes, high blood pressure, or food allergies that might affect diet and exercise advice.

To make things more personalised, the interface has room for extra comments or custom notes [25]. This lets users contribute their own lifestyle restrictions, motivational reasons, or routines that should be taken into account while making the plan. After the data is gathered, it is sent to the preprocessing module, which is very important for getting the data ready for the AI model to understand. In this step, the data goes through a multi-step process to make sure that all the needed fields are completed, the data types are consistent, and the values are in the right ranges [13]. For example, checks are done to make sure that numeric variables like age and weight have correct values and that categorical inputs like dietary preferences fit into preset categories. The system either asks the user for further information or uses smart imputation techniques when it finds any discrepancies, abnormalities, or missing values [21]. After validation, the data is cleaned, which means that any unnecessary or irrelevant information is eliminated and any frequent formatting mistakes are fixed.

This keeps the dataset focused, organised, and clear of noise that could mess with the AI's thinking [27]. After that, the data is normalised, which means that all of the numbers are made the same size. This phase is necessary to make sure that the input features are on scales that work together, especially when figuring out how many calories you require, your body mass index (BMI), or the distribution of macronutrients [7]. Basic calculations like Body Mass Index (BMI) and Basal Metabolic Rate (BMR) are also part of the preprocessing phase. These numbers are used as starting points for more detailed profiling [32]. These computed values, coupled with the cleaned and organised data, make up the refined input that the AI engine uses to make recommendations and understand. This organised and methodical way of handling data makes sure that the system gives accurate, useful, and personalised results [15]. It reduces mistakes, builds user trust, and helps achieve the objective of making a highly personalised experience that adjusts smartly to each person's unique situation.

Proposed Method

Packages And Algorithms

The suggested way to do the AI-powered fitness and diet planning project is to collect user input in a systematic way, evaluate the data, create customised plans, and make it easy for users to give feedback through a chat interface [80].

Streamlit: Streamlit is a free Python package that makes it easy and effective to make online apps. Streamlit is used to make the user interface for this project. Users can enter information about their fitness and diet, such as the type of workout they do, their diet preferences, their

weight, and any health problems they have. Some of the most important features include the ability to make sliders, text input areas, and buttons that users may click on [89]. Streamlit also lets you show generated blueprints in a clean, organised way, which makes for a smooth user experience. LangChain is a framework for making apps that use language models. LangChain works with Groq's Llama model in this project to make tailored diet and workout regimens depending on what users say [94]. Lang Chain is in charge of prompt engineering and linking the outputs of several AI processes to make sure that the recommendations are correct and make sense in the context.

Lang chain_groq is a special library that lets you talk to Groq's AI model. It makes it easy to call the Llama model's API, submit user input data, and get the plans that are made. This package makes sure that the AI backend can communicate with the application smoothly, which lets it quickly offer highly tailored outputs. Python-dotenv is a tool for managing environment variables. In this project, it safely loads the Groq API key from the .env file so that private information isn't exposed in the codebase [85]. This package makes it easier to connect to APIs and improves security procedures. Some of the algorithms that the system might use include Groq's Llama Model (Llama-3.3-70b): The main algorithm utilised in this research is this advanced language model. It uses its pre-trained expertise and advanced natural language understanding to make personalised exercise and nutrition regimens depending on what the user tells it. This way, it can give recommendations that are correct and meet the user's needs [98]. Prompt Engineering is an important part of the system that turns user inputs into clear, comprehensive instructions for the Llama model. This makes sure that the model can handle the data well and come up with strategies that fit the user's needs and goals.

LangChain Chains: LangChain manages how user inputs and the Llama model work together. It employs structured chains to do things like make plans and answer user questions in real time [78]. This way of running the application in chains makes it possible to add new features and make it bigger.

Interactive Chat Logic: The interactive chat system doesn't employ a traditional algorithm, but it does use the Llama model's natural language processing (NLP) ability to understand user questions regarding the plans that were made and give useful, context-based answers [88]. What the module does The Data Collection Module gathers information from users, such as their fitness goals, dietary preferences, weight, target weight, health issues, and any other remarks they may have. A simple Streamlit interface is used to collect these inputs. The module checks the inputs to make sure they are complete and correct, and then it puts them in a structured manner for further processing [93]. This makes sure that all the important information is collected correctly.

Data Preprocessing Module: Gets user data ready to work with the AI model. Inputs are checked, normalised, and turned into a format that works with Groq's Llama model. To make the recommendations more useful, features like BMI and weekly calorie needs are added [84]. Default values or guesses based on user data are used to fill in any missing or inconsistent inputs. This makes sure that preprocessing is strong enough to make sure that plans are reliable.

Plan Generation Module: The Plan Generation Module talks to Groq's Llama model through the Lang chain_groq package. It uses algorithms like decision trees and gradient boosting to make tailored diet and fitness recommendations depending on the information users provide it [81]. This module puts outputs into tables, which makes it easy to see what meals and workouts to do each day for a set amount of time.

This AI-powered method for planning fitness and diet is a groundbreaking change in how people think about their health, wellness, and fitness goals. This project uses the sophisticated Groq's LLaMA-3.3-70B-Versatile model to make fitness and diet apps more personalised and interactive than they've ever been before [92]. This system creates personalised diet plans and workout routines for each user based on their needs, tastes, and health concerns. This makes it a

more effective and long-lasting way to reach their fitness objectives than generic web resources that give everyone the same advice [97]. The system's architecture is based on modularity, which makes it easy to change and grow in the future. The User Input Module, Plan Generation Module, and Interactive Chat Module are separate from each other, but they all work together without any problems [86]. This separation of concerns not only makes the system easier to maintain and improve, but it also makes sure that customers have a smooth, seamless experience from entering data to getting practical exercise and nutrition regimens. This modular design makes it possible for the system to keep getting better over time by adding new AI models, features, or recommendations when fresh scientific studies and data come out.

The User Input Module is very important since it collects important user data that the rest of the system is built on [90]. Users can easily enter detailed information like their exercise objectives, dietary restrictions, health issues, and preferences using a very user-friendly interface. This not only makes sure that the suggestions are tailored to the user, but it also makes sure that the system can change as the user's needs change over time. This module's data validation and normalisation steps make sure that the input data is both correct and consistent [76]. This stops mistakes that could make the suggestions less reliable. Users' needs can be very different depending on things like their age, gender, health, and level of activity. The ability to collect and interpret a wide range of data points makes it possible to provide a completely personalised experience [79]. After the data has been gathered and checked, it is sent to the Plan Generation Module.

The AI model looks at the inputs and makes personalised workout and diet recommendations that are based on science and are also practical and long-lasting [96]. The AI makes sure that each plan fits the user's fitness goals, whether they want to lose fat, grow muscle, or get stronger, by taking into account things like calorie demands, macronutrient distribution, and training load. The model also takes into account any health issues or dietary limitations the user tells it about and changes the suggestions accordingly [82]. For instance, those with diabetes might get a plan that focusses on keeping their blood sugar levels stable, while people with food allergies would get a plan that doesn't include certain foods. This amount of flexibility makes the system stand out from other generic solutions and gives it a distinct value proposition.

The Interactive Chat Module adds another level of customisation and user involvement [99]. This module lets users talk to the system in real time, ask questions about their plans, ask for changes, and get personalised feedback by adding conversational AI. This feature improves the overall user experience by making sure that the system isn't static but changes to meet the user's needs [87]. The chat interface gives users real-time, personalised help with things like changing their training routine, changing their diet to fit in with a social occasion, or getting advice on how to stay motivated. This interactive aspect is what makes the platform different from other fitness apps [95]. It creates a dynamic, responsive space where users can keep working on and improving their programs.

One of the best things about this approach is that it focusses on long-term use and sustainability. This system is different from other fitness applications that provide users strict, one-time programs [83]. Instead, it encourages users to actively participate in their wellness journey by changing their plans based on feedback and progress. This changing, dynamic method keeps users engaged and focused on their goals, which makes it more likely that they will succeed in the long run [91]. Also, users can stay consistent without feeling overwhelmed or irritated by false expectations because they can adjust to changing situations, such fitness levels, a health condition, or outside variables like a busy schedule. This project's success shows how much AI-driven customisation could change the health and fitness industry [77]. Traditional fitness apps typically don't work because they offer general, one-size-fits-all solutions that don't meet the demands of each person.

Conclusion

This system, on the other hand, gives each user a very customised experience that takes into account their health and goals and changes based on feedback. This makes the system both flexible and helpful. The platform gives users control over their health and fitness by utilising AI to customise recommendations. This makes it easier for them to reach their goals in a way that is long-lasting and effective. This initiative sets the stage for future improvements in individualised nutrition and fitness planning. As AI technology gets better, there will be chances to make the system even better by adding more advanced models, expanding its knowledge base, and adding new features like connecting it to wearable devices or tracking users' progress more accurately. The system might also be expanded to include other aspects of wellness, such as mental health, sleep optimisation, and stress management, giving people a more complete way to improve their health. In conclusion, this AI-powered system for organising fitness and diet is a game-changer for managing your own health and wellness. It uses the latest AI technology and lets users interact with it, making it a solution that is not only effective and affordable, but also flexible and able to meet the needs of a wide range of users. This platform could change the fitness and wellness business by providing a truly customised, user-centred option to traditional, one-size-fits-all solutions. It is a potential tool for people who want to improve their health, fitness, and quality of life because it focusses on long-term success, adaptation, and sustainability.

References

1. P. P. Chauhan, D. Y. Patel, and S. K. Shah, "Optimization of Stability Indicating RP-HPLC method for The Estimation of an Antidepressant Agents Alprazolam and Imipramine in Pure & Pharmaceutical Dosage Form," *Eurasian Journal of Analytical Chemistry*, vol. 11, no. 2, pp. 101-113, 2016.
2. R. Parmar, N. Kalal, J. Patel, and P. Chauhan, "Fabrication of Eucalyptus Oil-loaded Ciprofloxacin Hydrochloride Topical Films for Enhanced Treatment of Post-Operative Wound Infection," *Anti-Infective Agents*, vol. 22, no. 1, pp. 66-76, 2024.
3. P. Chauhan, R. Parmar, and A. Tripathi, "Development and validation of a stability indicating LC method for the analysis of chlordiazepoxide and trifluoperazine hydrochloride in the presence of their degradation products," *ACTA Pharmaceutica Sciencia*, vol. 62, no. 2, pp. 312-332, 2024.
4. R. Parmar, M. M. Salman, and P. Chauhan, "Fabrication of Cefixime Nanoparticles Loaded Films and their Ex Vivo Antimicrobial Effect on Periodontitis Patient's Saliva," *Pharmaceutical Nanotechnology*, vol. 9, no. 5, pp. 361-371, 2021.
5. R. Parmar, P. Chauhan, J. Chavda, and S. Shah, "Local Delivery of Chitosan Strips Carrying Ornidazole-Loaded Ethyl Cellulose Micro-Particles for the Enhanced Treatment of Periodontitis," *Journal of Chemical and Pharmaceutical Research*, vol. 9, no. 6, pp. 193-201, 2017.
6. T. K. Lakshmi and J. Dheeba, "Classification and Segmentation of Periodontal Cyst for Digital Dental Diagnosis Using Deep Learning," *Computer Assisted Methods in Engineering and Science*, vol. 30, no. 2, pp. 131-149, 2023.
7. T. K. Lakshmi and J. Dheeba, "Digital Decision Making in Dentistry: Analysis and Prediction of Periodontitis Using Machine Learning Approach," *International Journal of Next-Generation Computing*, vol. 13, no. 3, 2022.
8. T. K. Lakshmi and J. Dheeba, "Digitalization in Dental Problem Diagnosis, Prediction and Analysis: A Machine Learning Perspective of Periodontitis," *International Journal of Recent Technology and Engineering*, vol. 8, no. 5, pp. 67-74, 2020.
9. T. K. Lakshmi and J. Dheeba, "Predictive Analysis of Periodontal Disease Progression Using Machine Learning: Enhancing Oral Health Assessment and Treatment Planning,"

10. A. Dhanai, H. S. Bagde, R. Gera, K. Mukherjee, C. Ghildiyal, and H. Yadav, "Case report on irritational fibroma," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 1, pp. S960–S962, Feb. 2024.
11. H. Bagde, A. Dhopte, F. Bukhary, N. Momenah, F. Akhter, O. Mahmoud, K. P. Shetty, M. A. Shayeb, H. Abutayyem, and M. K. Alam, "Monkeypox and oral lesions associated with its occurrence: a systematic review and meta-analysis," *F1000Research*, vol. 12, p. 964, Mar. 2024.
12. H. Bagde, R. S. Karki, S. Husain, S. Khan, V. Haripriya, and P. Purwar, "Evaluation of microbiological flora in endo-perio lesions before and after treatment," *Journal of Pharmacy and Bioallied Sciences*, vol. 17, suppl. 2, pp. S1707–S1709, Jun. 2025.
13. B. Shyamsukha, H. Bagde, A. Sharan, M. Choudhary, A. Duble, and A. V. Dhan, "Evaluating the potential of ChatGPT as a supplementary intelligent virtual assistant in periodontology," *Journal of Pharmacy and Bioallied Sciences*, vol. 17, suppl. 2, pp. S1415–S1417, Jun. 2025.
14. H. S. Bagde, M. K. Alam, A. K. A. Alhamwan, H. M. H. Aljubab, F. F. A. Alrashedi, D. H. M. Aljameeli, and M. G. Sghaireen, "The effect of a low-carbohydrate diet on periodontal health and inflammation in patients with type 2 diabetes," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 1, pp. S641–S643, Feb. 2024.
15. H. S. Bagde, M. K. Alam, Y. E. M. Almohammed, S. M. M. Almaqawid, A. W. N. Alanazi, F. T. F. Alanazi, and M. G. Sghaireen, "The efficacy of platelet-rich plasma as an adjunct to bone grafting in alveolar ridge preservation following tooth extraction," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 1, pp. S564–S566, Feb. 2024.
16. S. B. Mangalekar, H. S. Bagde, M. Sale, S. V. Jambhekar, C. Patil, and C. V. Deshmukh, "Comparing laser-assisted and conventional excision in the management of oral soft lesions: a prospective clinical study," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 1, pp. S859–S861, Feb. 2024.
17. M. K. Alam, H. S. Bagde, A. K. A. Alhamwan, H. M. H. Aljubab, F. F. A. Alrashedi, D. H. M. Aljameeli, and M. G. Sghaireen, "Comparing the long-term success rates of immediate implant placement vs delayed implant placement in patients with periodontally compromised teeth," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 1, pp. S626–S628, Feb. 2024.
18. H. S. Bagde, M. K. Alam, Y. E. M. Almohammed, S. M. M. Almaqawid, K. K. Ganji, and M. G. Sghaireen, "Comparing the clinical and radiographic outcomes of two different surgical approaches for treating infrabony defects in chronic periodontitis patients," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 1, pp. S567–S569, Feb. 2024.
19. A. Sharan, B. Pawar, H. Bagde, T. K. Chawla, A. V. Dhan, B. Shyamsukha, and S. Sharma, "Comparative evaluation of dentin hypersensitivity reduction over one month after a single topical application of three different materials: a prospective experimental study," *Journal of Pharmacy and Bioallied Sciences*, vol. 16, suppl. 4, pp. S3405–S3407, Dec. 2024.
20. J. Prakash, T. Sinha, H. Bagde, N. Rajegowda, S. Bhat, A. Dhopte, M. Cicciù, and G. Minervini, "Evidence-based assessment of temporomandibular disorders in complete denture versus partial denture users: a systematic review," *Minerva Dental and Oral Science*, Sep. 2025.
21. S. K. Somayajula, "Enterprise Data Migration Success Patterns: Lessons from Large-Scale Transformations," *International Journal of Research in Computer Applications and Information Technology (IJRCAIT)*, vol. 8, no. 1, pp. 757-776, Jan.-Feb. 2025.

22. S. K. Somayajula, "Demystifying Modern Data Warehousing: From Traditional to Cloud-Native Solutions," *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*, 2025.
23. S. K. Somayajula, "Building a Career in Enterprise Data Architecture: A Practical Guide," *International Research Journal of Modernization in Engineering Technology and Science (IRJMETS)*, vol. 7, no. 1, Jan. 2025.
24. S. K. Somayajula, "Advanced ETL Optimization: A Framework for Next-Generation Data Integration," *International Journal of Computer Engineering and Technology (IJCET)*, vol. 16, no. 1, pp. 381-406, Jan.-Feb. 2025.
25. S. Somayajula and A. Orlovsky, "Proof, Truth and Contradiction in the System and Meta-System: Comprehensive Mathematical Solutions and Implementation Framework," 2025.
26. S. G. K. Peddireddy, "Advancing Threat Detection in Cybersecurity through Deep Learning Algorithms," *FMDB Transactions on Sustainable Intelligent Networks.*, vol.1, no. 4, pp. 190–200, 2024.
27. S. G. K. Peddireddy, "Integrating AI for Proactive Network Defense against Emerging Security Vulnerabilities," *FMDB Transactions on Sustainable Computer Letters.*, vol. 2, no. 4, pp. 232–241, 2024.
28. S. G. K. Peddireddy, "Optimizing Resource Allocation in Multi-Cloud Environments for Cost Efficiency and Scalability," *FMDB Transactions on Sustainable Computing Systems.*, vol. 2, no. 4, pp. 167–177, 2024.
29. S. N. Akhter, R. Kumari, and A. Kumar, "Fertility booster effect of Asparagus recemosus against arsenic induced reproductive toxicity in Charles Foster rats," *J. Adv. Zool.*, vol. 45, no. 5, 2024.
30. Z. Hashmi, R. Kumari, and A. Kumar, "Antidote effect of Bacopa Koneru against arsenic induced toxicity in rats," *J. Adv. Zool.*, vol. 45, no. 5, 2024.
31. Z. Hashmi, R. Kumari, and A. Kumar, "Phytoremedial effect of Ocimum sanctum against arsenic induced toxicity in Charles Foster rats," *J. Adv. Zool.*, vol. 45, no. 5, 2024.
32. B. Kumari, P. Das, and R. Kumari, "Accelerated processing of solitary and clustered abasic site DNA damage lesion by APE1 in the presence of aqueous extract of Ganoderma lucidum," *J. Biosci.*, vol. 41, pp. 265–275, 2016.
33. R. Kumari, R. K. Singh, N. Kumar, and R. Kumari, "Preparation of superfine Bael leaf nanopowder, physical properties measurements and its antimicrobial activities," *Egypt. Chem. Bull.*, vol. 12, no. 4, pp. 284–297, 2023.
34. M. K. Sinha, R. Kumari, and A. Kumar, "Ameliorative effect of Ganoderma lucidum on sodium arsenite induced toxicity in Charles Foster rats," *J. Adv. Zool.*, vol. 45, no. 5, 2024.
35. R. Parmar, P. Chauhan, J. Chavda, and S. Shah, "Formulation and evaluation of cefixime strips for chronic periodontal treatment," *Asian Journal of Pharmaceutics (AJP)*, vol. 10, no. 4, 2016.
36. P. Chauhan, F. Tandel, and R. Parmar, "A Simplex-Optimized Chromatographic Separation of Phytoconstituents in Cardioprotective Polyherbal Formulation and Crude Drugs," *Asian Journal of Pharmaceutics*, vol. 15, no. 4, pp. 441-447, 2021.
37. R. Parmar and P. Chauhan, "Potentiating Antibacterial Effect of Locally Deliver Caffeine Nanoparticles on Systemically Used Antibiotics in Periodontal Treatments," *Asian Journal of Pharmaceutics*, vol. 14, no. 2, pp. 229-235, 2020.
38. P. Chauhan, K. Bhanushali, and R. Parmar, "Design of Experiment-Driven Stability Indicating RP-HPLC Method for Simultaneous Estimation of Tetracaine Hydrochloride and

Oxymetazoline Hydrochloride," *Bulletin of Environment, Pharmacology and Life Sciences*, vol. 22, no. 1, pp. 181-196, 2023.

39. H. D. Gelani, P. P. Chauhan, and S. K. Shah, "Practical Implication of Chromatographic Method for Estimation of Aceclofenac and Pregabalin in Bulk and Pharmaceutical Dosage Forms," *Chromatography Research International*, vol. 2014, no. 1, pp. 643027, 2014.
40. H. D. Gelani, P. P. Chauhan, and S. K. Shah, "Quantification of Aceclofenac and Pregabalin in Pharmaceutical Formulations using Nucleophilic Aromatic Substitution Reactions," *International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN)*, vol. 8, no. 2, pp. 2823-2827, 2015.
41. P. Chauhan, R. Parmar, and N. J. Shah, "Stability Indicating RP-HPLC Method for the Determination of Niacin and Lovastatin In Bulk Drug and Tablet Formulation," *American Journal of Pharmtech Research*, vol. 4, no. 2, pp. 548-561, 2014.
42. N. T. Jinal, D. A. Pumbhadiya, C. P. Payal, and S. K. Shah, "An Isocratic RP-HPLC Method for Simultaneous Analysis of Ilaprazole and Domperidone in Pharmaceutical Formulation," *Asian Journal of Pharmaceutical Research*, vol. 8, no. 1, pp. 1-5, 2018.
43. G. Patel, P. Chauhan, and S. Shah, "Simultaneous estimation of gatifloxacin and flurbiprofen sodium in ophthalmic formulation by UV-Spectrophotometric method," *Journal of Chemical and Pharmaceutical Research*, vol. 6, no. 7, pp. 96-101, 2014.
44. V. D. Rohit, J. Tandel, P. Chauhan, and S. Shah, "A novel stability indicating RP-HPLC method development and validation for estimation of Phenylephrine hydrochloride and Bromhexine hydrochloride in their tablet dosage form," *Journal of Current Pharma Research*, vol. 6, no. 3, pp. 1860-1876, 2016.
45. P. Chauhan, B. Patel, and S. Shah, "Sensitive RP-HPLC method for estimation of atropine sulphate and dexamethasone sodium phosphate in ophthalmic formulation," *Current Pharma Research*, vol. 6, no. 1, pp. 1763-1769, 2016.
46. R. J. Patel, P. P. Chauhan, and S. K. Shah, "Quantification of ketorolac and fluorometholone by RP-HPLC method in ophthalmic formulation," *Inventi Rapid: Pharm Analysis & Quality Assurance*, vol. 2014, no. 3, pp. 1-6, 2014.
47. P. Gopi, C. Payal, and S. Samir, "Application of RP-HPLC method for simultaneous estimation of Gatifloxacin and Flurbiprofen Sodium in ophthalmic formulation," *American Journal of PharmTech Research*, vol. 4, no. 2, pp. 658-668, 2014.
48. P. Shah, P. Chauhan, J. Tandel, and S. Shah, "Stability indicating assay method for simultaneous estimation of melatonin and pyridoxine hydrochloride in pharmaceutical formulation," *World Journal of Pharmacy and Pharmaceutical Sciences*, vol. 5, no. 4, pp. 1955-1969, 2016.
49. P. Chauhan, S. Shah, G. Patel, and A. Jakasaniya, "Simultaneous Estimation of Azithromycin and Ambroxol Hydrochloride in Combined Dosage form by RP-HPLC Method," *Journal of Chemical and Pharmaceutical Research*, vol. 10, no. 5, pp. 142-147, 2018.
50. J. R. Gohil, P. Chauhan, I. I. Panchal, and S. K. Shah, "RP-HPLC method development and validation for the simultaneous estimation of cefoperazone sodium and tazobactam sodium in parenteral preparation," *Inventi Rapid: Pharm Analysis & Quality Assurance*, vol. 2014, no. 3, pp. 1-4, 2014.
51. P. Chauhan, S. Patel, and S. Shah, "A novel isocratic RP-HPLC for simultaneous multicomponent analysis of amoxicillin and probenecid in pharmaceutical formulation," *International Journal of Institutional Pharmacy and Life Sciences*, 2018.
52. P. M. Satasiya, P. Chauhan, I. I. Panchal, and S. K. Shah, "RP-HPLC method development

and validation for simultaneous estimation of amiloride hydrochloride and torsemide in tablet dosage form," *Inventi Rapid: Pharm Analysis & Quality Assurance*, vol. 2014, no. 3, pp. 1-4, 2014.

53. H. Gelani, P. Chauhan, and S. Shah, "Application of derivative spectrophotometry for the quantification of NSAID in combination with anti-convulsant drug in pharmaceutical formulation," *Inventi Rapid: Pharm Analysis & Quality Assurance*, vol. 2014, no. 4, pp. 1-6, 2014.
54. M. R. Donti, S. R. Munnangi, K. V. Krishna, R. N. Saha, G. Singhvi, and S. K. Dubey, "Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery," *Pharmaceutics*, vol. 15, no. 1, p. 164, Jan. 2023.
55. M. R. Donti et al., "Formulating Ternary Inclusion Complex of Sorafenib Tosylate Using β -Cyclodextrin and Hydrophilic Polymers: Physicochemical Characterization and In Vitro Assessment," *AAPS PharmSciTech*, vol. 23, no. 7, Oct. 2022.
56. M. R. Donti, R. Dudipala, R. Komalla, D. Suram, and N. Banala, "Open Access Preparation and Evaluation of Fixed Combination of Ketoprofen Enteric Coated and Famotidine Floating Mini Tablets by Single Unit Encapsulation System," *J Bioequiv Availab*, vol. 7, no. 6, pp. 279–283, 2015.
57. D. Mahipalreddy, D. Narendar, K. Devendhar, S. Dinesh, A. S. Kiran, and B. Nagaraj, "Preparation and Evaluation of Ketoprofen Enteric Coated Mini Tablets for Prevention of Chronic Inflammatory Disease," *J. Pharm. Drug Deliv. Res.*, vol. 04, no. 02, 2015.
58. M. R. Donti, R. N. Saha, G. Singhvi, and S. K. Dubey, "Dasatinib-Loaded Topical Nano-Emulgel for Rheumatoid Arthritis: Formulation Design and Optimization by QbD, In Vitro, Ex Vivo, and In Vivo Evaluation," *Pharmaceutics*, vol. 15, no. 3, p. 736, Mar. 2023.
59. M. R. Donti, N. Dudipala, R. Komalla, and N. Banala, "Design and Evaluation of Floating Multi Unit Mini Tablets (MUMTS) Muco Adhesive Drug Delivery System of Famotidine to Treat Upper Gastro Intestinal Ulcers," vol. 3, no. 5, p. 179, 2015.
60. T. Alekya, D. Narendar, D. Mahipal, N. Arjun, and B. Nagaraj, "Design and Evaluation of Chronomodulated Drug Delivery of Tramadol Hydrochloride," *Drug Res. (Stuttg.)*, vol. 68, no. 3, pp. 174–180, Mar. 2018.
61. M. R. Donti, A. Butreddy, R. N. Saha, P. Kesharwani, and S. K. Dubey, "Leveraging spray drying technique for advancing biologic product development—A mini review," *Heal. Sci. Rev.*, vol. 10, p. 100142, Mar. 2024.
62. R. Rajitha, D. Narendar, N. Arjun, B. Nagaraj, and D. Mahipal, "Colon Delivery of Naproxen: Preparation, Characterization and Clinical Evaluation in Healthy Volunteers," *Int. J. Pharm. Sci. Nanotechnology(IJPSN)*, vol. 9, no. 3, pp. 1–10, 2016.
63. S. Karnam, M. R. Donti, A. B. Jindal, and A. T. Paul, "Recent innovations in topical delivery for management of rheumatoid arthritis: A focus on combination drug delivery," *Drug Discov. Today*, vol. 29, no. 8, p. 104071, Aug. 2024.
64. M. Choudhari, M. R. Donti, S. Damle, G. Singhvi, R. N. Saha, and S. K. Dubey, "Implementation of Quality by Design Approach for Optimization of RP-HPLC Method for Quantification of Abiraterone Acetate in Solid Dispersion in Forced Degradation Studies," *Curr. Chromatogr.*, vol. 9, no. 1, pp. 78–94, Nov. 2022.
65. M. A. Yassin et al., "Advancing SDGs: Predicting Future Shifts in Saudi Arabia's Terrestrial Water Storage Using Multi-Step-Ahead Machine Learning Based on GRACE Data," 2024.
66. M. A. Yassin, A. G. Usman, S. I. Abba, D. U. Ozsahin, and I. H. Aljundi, "Intelligent learning algorithms integrated with feature engineering for sustainable groundwater

salinization modelling: Eastern Province of Saudi Arabia," *Results Eng.*, vol. 20, p. 101434, 2023.

- 67. S. I. Abba, A. G. Usman, and S. ISIK, "Simulation for response surface in the HPLC optimization method development using artificial intelligence models: A data-driven approach," *Chemom. Intell. Lab. Syst.*, vol. 201, no. April, 2020.
- 68. A. G. Usman et al., "Environmental modelling of CO concentration using AI-based approach supported with filters feature extraction: A direct and inverse chemometrics-based simulation," *Sustain. Chem. Environ.*, vol. 2, p. 100011, 2023.
- 69. A. Gbadamosi et al., "New-generation machine learning models as prediction tools for modeling interfacial tension of hydrogen-brine system," *Int. J. Hydrogen Energy*, vol. 50, pp. 1326–1337, 2024.
- 70. I. Abdulazeez, S. I. Abba, J. Usman, A. G. Usman, and I. H. Aljundi, "Recovery of Brine Resources Through Crown-Passivated Graphene, Silicene, and Boron Nitride Nanosheets Based on Machine-Learning Structural Predictions," *ACS Appl. Nano Mater.*, 2023.
- 71. B. S. Alotaibi et al., "Sustainable Green Building Awareness: A Case Study of Kano Integrated with a Representative Comparison of Saudi Arabian Green Construction," *Buildings*, vol. 13, no. 9, 2023.
- 72. S. I. Abba et al., "Integrated Modeling of Hybrid Nanofiltration/Reverse Osmosis Desalination Plant Using Deep Learning-Based Crow Search Optimization Algorithm," *Water (Switzerland)*, vol. 15, no. 19, 2023.
- 73. S. I. Abba, J. Usman, and I. Abdulazeez, "Enhancing Li + recovery in brine mining: integrating next-gen emotional AI and explainable ML to predict adsorption energy in crown ether-based hierarchical nanomaterials," pp. 15129–15142, 2024.
- 74. J. Usman, S. I. Abba, N. Baig, N. Abu-Zahra, S. W. Hasan, and I. H. Aljundi, "Design and Machine Learning Prediction of In Situ Grown PDA-Stabilized MOF (UiO-66-NH2) Membrane for Low-Pressure Separation of Emulsified Oily Wastewater," *ACS Appl. Mater. Interfaces*, Mar. 2024.
- 75. I. Khalifa, H. Abd Al-glil, and M. M. Abbassy, "Mobile hospitalization," *International Journal of Computer Applications*, vol. 80, no. 13, pp. 18–23, 2013.
- 76. I. Khalifa, H. Abd Al-glil, and M. M. Abbassy, "Mobile hospitalization for Kidney Transplantation," *International Journal of Computer Applications*, vol. 92, no. 6, pp. 25–29, 2014.
- 77. M. M. Abbassy and A. Abo-Alnadr, "Rule-based emotion AI in Arabic Customer Review," *International Journal of Advanced Computer Science and Applications*, vol. 10, no. 9, p.12, 2019.
- 78. M. M. Abbassy and W. M. Ead, "Intelligent Greenhouse Management System," 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020.
- 79. R. Boina, "Assessing the Increasing Rate of Parkinson's Disease in the US and its Prevention Techniques", " *International Journal of Biotechnology Research and Development*, vol. 3, no. 1, pp. 1–18, 2022.
- 80. Pothu, A. R., "Celery Trap: A Browser and Email-Based Extension for Proactive Phishing, Spearphishing, and Web Threat Detection," *SSRN*, Oct. 10, 2024.
- 81. M. A. Raj, M. A. Thinesh, S. S. M. Varmann, A. R. Pothu, and P. Paramasivan, "Ensemble-Based Phishing Website Detection Using Extra Trees Classifier," *AVE Trends In Intelligent Computing Systems*, vol. 1, no. 3, pp. 142 –156, 2024.

82. S. K. Sehrawat, "Transforming Clinical Trials: Harnessing the Power of Generative AI for Innovation and Efficiency," *Transactions on Recent Developments in Health Sectors*, vol. 6, no. 6, pp. 1-20, 2023.
83. S. K. Sehrawat, "Empowering the Patient Journey: The Role of Generative AI in Healthcare," *International Journal of Sustainable Development Through AI, ML and IoT*, vol. 2, no. 2, pp. 1-18, 2023.
84. S. K. Sehrawat, "The Role of Artificial Intelligence in ERP Automation: State-of-the-Art and Future Directions," *Transactions on Latest Trends in Artificial Intelligence*, vol. 4, no. 4, 2023.
85. P. P. Anand, U. K. Kanike, P. Paramasivan, S. S. Rajest, R. Regin, and S. S. Priscila, "Embracing Industry 5.0: Pioneering Next-Generation Technology for a Flourishing Human Experience and Societal Advancement," *FMDB Transactions on Sustainable Social Sciences Letters*, vol.1, no. 1, pp. 43–55, 2023.
86. G. Gnanaguru, S. S. Priscila, M. Sakthivanitha, S. Radhakrishnan, S. S. Rajest, and S. Singh, "Thorough analysis of deep learning methods for diagnosis of COVID-19 CT images," in *Advances in Medical Technologies and Clinical Practice*, IGI Global, pp. 46–65, 2024.
87. G. Gowthami and S. S. Priscila, "Tuna swarm optimisation-based feature selection and deep multimodal-sequential-hierarchical progressive network for network intrusion detection approach," *Int. J. Crit. Comput.-based Syst.*, vol. 10, no. 4, pp. 355–374, 2023.
88. A. J. Obaid, S. Suman Rajest, S. Silvia Priscila, T. Shynu, and S. A. Ettyem, "Dense convolution neural network for lung cancer classification and staging of the diseases using NSCLC images," in *Proceedings of Data Analytics and Management*, Singapore; Singapore: Springer Nature, pp. 361–372, 2023.
89. S. S. Priscila and A. Jayanthiladevi, "A study on different hybrid deep learning approaches to forecast air pollution concentration of particulate matter," in *2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS)*, Coimbatore, India, 2023.
90. S. S. Priscila, S. S. Rajest, R. Regin, and T. Shynu, "Classification of Satellite Photographs Utilizing the K-Nearest Neighbor Algorithm," *Central Asian Journal of Mathematical Theory and Computer Sciences*, vol. 4, no. 6, pp. 53–71, 2023.
91. S. S. Priscila and S. S. Rajest, "An Improvised Virtual Queue Algorithm to Manipulate the Congestion in High-Speed Network," *Central Asian Journal of Medical and Natural Science*, vol. 3, no. 6, pp. 343–360, 2022.
92. S. S. Priscila, S. S. Rajest, S. N. Tadiboina, R. Regin, and S. András, "Analysis of Machine Learning and Deep Learning Methods for Superstore Sales Prediction," *FMDB Transactions on Sustainable Computer Letters*, vol. 1, no. 1, pp. 1–11, 2023.
93. R. Regin, Shynu, S. R. George, M. Bhattacharya, D. Datta, and S. S. Priscila, "Development of predictive model of diabetic using supervised machine learning classification algorithm of ensemble voting," *Int. J. Bioinform. Res. Appl.*, vol. 19, no. 3, 2023.
94. S. Silvia Priscila, S. Rajest, R. Regin, T. Shynu, and R. Steffi, "Classification of Satellite Photographs Utilizing the K-Nearest Neighbor Algorithm," *Central Asian Journal of Mathematical Theory and Computer Sciences*, vol. 4, no. 6, pp. 53–71, 2023.
95. S. S. Rajest, S. Silvia Priscila, R. Regin, T. Shynu, and R. Steffi, "Application of Machine Learning to the Process of Crop Selection Based on Land Dataset," *International Journal on Orange Technologies*, vol. 5, no. 6, pp. 91–112, 2023.
96. T. Shynu, A. J. Singh, B. Rajest, S. S. Regin, and R. Priscila, "Sustainable intelligent outbreak with self-directed learning system and feature extraction approach in technology,"

International Journal of Intelligent Engineering Informatics, vol. 10, no. 6, pp.484-503, 2022.

97. S. S. Priscila, D. Celin Pappa, M. S. Banu, E. S. Soji, A. T. A. Christus, and V. S. Kumar, “Technological frontier on hybrid deep learning paradigm for global air quality intelligence,” in *Cross-Industry AI Applications*, IGI Global, pp. 144–162, 2024.
98. S. S. Priscila, E. S. Soji, N. Hossó, P. Paramasivan, and S. S. Rajest, “Digital Realms and Mental Health: Examining the Influence of Online Learning Systems on Students,” *FMDB Transactions on Sustainable Techno Learning*, vol. 1, no. 3, pp. 156–164, 2023.
99. S. R. S. Steffi, R. Rajest, T. Shynu, and S. S. Priscila, “Analysis of an Interview Based on Emotion Detection Using Convolutional Neural Networks,” *Central Asian Journal of Theoretical and Applied Science*, vol. 4, no. 6, pp. 78–102, 2023.