
183 Journal of Science on Integration and Human Development www. grnjournal.us

AMERICAN Journal of Science on Integration and
 Human Development

Volume 1, Issue 10, 2023 ISSN (E): 2993-2750

Managing Historical and Delta Loads with Efficient Data

Versioning in Qlik Applications

Ajay Kumar Kota

Apellis Pharma, MA

Abstract: In enterprise business intelligence environments, especially within data-intensive

sectors like pharmaceuticals, maintaining both high-performance dashboards and accurate

historical reporting is a persistent challenge. This article explores how Qlik applications can be

architected to handle delta loads and historical data versioning efficiently. Delta loading

techniques significantly reduce data refresh times by ingesting only new or changed records,

while historical tracking strategies, such as Slowly Changing Dimensions (SCD), allow

organizations to preserve and analyze time-based changes to critical attributes. The article

presents scripting strategies, QVD layering architectures, and scheduling practices that support

scalable data pipelines. It also examines a real-world pharmaceutical use case to illustrate the

operational benefits and regulatory alignment achieved through these techniques. Key

considerations include error handling, schema change detection, and best practices in data

lineage and logging. The article concludes with practical guidance to help BI developers ensure

data completeness, integrity, and auditability while optimizing performance in Qlik

environments.

Keywords: Qlik Sense, Delta Load, SCD Type 2, QVD Architecture, Pharma BI, Qlik Scripting.

1. Introduction

In today’s enterprise data environments, especially in sectors like finance, healthcare, and

pharmaceuticals, the ability to maintain and work with historical data is not just a technical

requirement—it’s a business imperative. Organizations need to track changes over time, analyze

performance trends, and meet compliance mandates that require accurate historical reporting. For

Qlik developers, this means going beyond simple data reloads to build models that retain context

across time and support advanced analytical use cases. Traditional full-load strategies, where

data is dropped and reloaded entirely with each refresh, are increasingly inefficient and error-

prone as data volumes grow. These approaches consume excessive resources, increase refresh

times, and can compromise user confidence if not properly synchronized with upstream changes.

This is where delta and historical loads become essential. Delta loads refer to the process of

capturing only the data that has changed since the last load—typically new, modified, or deleted

records. They enable Qlik applications to refresh more efficiently by avoiding redundant data

movement. Historical loads, on the other hand, involve maintaining a timeline of changes,

allowing analysts to query the state of the data as it existed at any point in the past. Together,

these strategies enable Qlik applications to become more performant, scalable, and intelligent.

In enterprise scenarios, combining both delta loading and data versioning is particularly

powerful. It supports business scenarios like regulatory audits, point-in-time financial statements,

184 Journal of Science on Integration and Human Development www. grnjournal.us

and year-over-year sales comparisons. More importantly, it allows Qlik developers to build

solutions that are resilient to change and future-proofed against data growth. Implementing these

techniques requires thoughtful data modeling, effective scripting practices, and a clear

understanding of how Qlik’s in-memory engine handles data refreshes. This article explores

those techniques in depth, starting with foundational concepts and moving toward real-world

implementation strategies, all while staying grounded in performance, governance, and business

value.

2. Understanding Historical vs. Delta Loads

Managing data in Qlik applications requires a clear understanding of how information flows over

time and how different loading strategies support specific business needs. Two of the most

essential methods in this regard are historical and delta loads. Although they are often used

interchangeably in conversation, they serve distinct functions and must be carefully considered

during model design.

Historical loading refers to the process of preserving all changes made to a dataset over time. It

is particularly useful for tracking how values evolve—such as employee salary history, product

pricing over months, or customer status changes. Historical data enables point-in-time analysis,

facilitates longitudinal studies, and supports audit and compliance efforts. This type of data load

ensures that once a record is modified, the previous version is not overwritten but instead

archived or recorded as part of a new row, typically with versioning fields or effective date

ranges. In BI terms, this is foundational for building slowly changing dimensions (SCDs),

especially Type 2, which are prevalent in data warehousing and regulatory-driven reporting

environments.

Delta loading, on the other hand, focuses on performance and efficiency. Rather than loading the

entire dataset during each refresh, only the records that have been inserted, updated, or deleted

since the last successful load are processed. This approach dramatically reduces load time and

system resource usage, which is critical for high-frequency ETL operations and real-time

dashboards. In Qlik, delta loading is typically achieved using QVD files and timestamp-based

comparisons to filter changed records.

While delta loading improves speed and responsiveness, historical loading ensures traceability

and context. In practice, many organizations employ a hybrid approach, where delta loading

handles the daily refresh needs, and historical versions are stored in parallel for auditing or

analytical use. Choosing between the two, or determining how to implement both concurrently,

depends on the business scenario, data volume, and compliance requirements. Ultimately, a

successful Qlik application must balance performance with completeness, and understanding

these two loading paradigms is the first step in that direction.

3. Data Versioning Concepts in BI

A data versioning in a Business Intelligence (BI) environment

185 Journal of Science on Integration and Human Development www. grnjournal.us

Data versioning is a foundational concept in modern Business Intelligence that ensures

consistency, auditability, and traceability across historical and transactional datasets. In Qlik

applications, where data is often visualized and interacted with by a wide range of business

users, versioning becomes essential when changes to data must be recorded and made available

for comparison over time. Without proper versioning, it becomes difficult to answer questions

such as “What was the sales figure on a specific date?” or “When did a customer’s status change

from active to inactive?”

At its core, data versioning involves the ability to store multiple records of the same entity, each

reflecting the state of the data at a particular point in time. This is typically done using timestamp

fields such as LastModifiedDate, EffectiveFrom, or ValidTo, which delineate when each record

was active. In Qlik, these fields can be used to structure time-aware filters, build audit trails, and

construct dynamic KPIs based on temporal snapshots.

Another important component of versioning is the use of unique identifiers. Every record should

have a primary key or surrogate key that remains stable across versions to link different states of

the same logical entity. For instance, a ProductID may remain the same while its attributes like

price or category may change across time. Tracking such changes requires a robust structure to

distinguish between the latest record and historical snapshots, often using flags like IsCurrent or

generating hash keys for change detection.

Additionally, handling soft deletes—where records are no longer active but not physically

removed from the database—also falls under the umbrella of versioning. In these cases, a status

field may indicate whether a record is active, archived, or deleted, allowing for full lifecycle

visibility.

Qlik applications benefit significantly from structured versioning logic, especially in

environments where regulatory reporting, financial audits, or data accuracy over time is critical.

Proper versioning not only enables accurate historical reporting but also prevents overwriting

errors, supports rollback scenarios, and provides a layer of transparency that strengthens trust in

BI outputs.

4. Implementing Delta Loads in Qlik: Scripting Strategies

Delta load implementation in Qlik

Implementing delta loads in Qlik is one of the most effective ways to optimize reload times,

reduce server strain, and deliver near real-time data updates. Delta loading focuses on ingesting

186 Journal of Science on Integration and Human Development www. grnjournal.us

only the records that have been created or modified since the last successful load, rather than

importing the entire dataset. The process begins by identifying a reliable field in the source

system that indicates when each record was last modified—commonly a LastModifiedDate,

UpdatedOn, or Timestamp field. This field becomes the basis for filtering incoming data during

each subsequent reload.

In Qlik scripting, developers typically store the most recent timestamp from the previous load in

a variable or metadata QVD file. During the next scheduled run, this value is used in the SQL or

API query to pull only records that have changed after that point. For example, a query might

include a WHERE LastModifiedDate > '$(vLastLoadTime)' clause, ensuring that only new or

updated records are fetched. Once these records are loaded, they are appended to an existing

QVD that serves as the consolidated delta store, or they may overwrite the relevant portion of

data depending on the business rules.

To ensure data accuracy and completeness, many developers implement validation logic that

checks for duplicate keys or mismatched field values between the source and existing QVD. A

staging layer may be used temporarily to hold incoming delta data, allowing comparison and

cleansing before it is merged into the main data model. This method is especially useful in

transactional environments where records may be modified frequently or contain dependencies

on other tables.

5. Historical Tracking and Slowly Changing Dimensions (SCD)

Capturing historical changes in data is essential for providing meaningful insights, especially in

analytics involving customer behavior, compliance reporting, or performance trends over time.

In Qlik applications, historical tracking is often implemented using techniques that mirror Slowly

Changing Dimensions (SCD), particularly Type 2. This methodology allows organizations to

retain multiple versions of a record and analyze changes in attributes such as customer status,

product categorization, or employee roles. Unlike delta loads, which focus on performance and

freshness, historical tracking is about preserving the state of data as it existed at specific points in

time.

A classic SCD Type 2 implementation in Qlik involves appending new rows to a dimension table

whenever a change is detected, rather than updating the existing row. Each row is tagged with an

EffectiveFrom and EffectiveTo date, along with a flag like IsCurrent, to indicate the validity

period of that version. This structure makes it possible to answer questions like, “What region

was this customer associated with in Q1 last year?” or “How did product prices change across

fiscal quarters?” By building this version-aware logic into the data model, Qlik enables analysts

to perform accurate time-based filtering and comparisons.

In Qlik scripting, change detection can be implemented using hash keys or row-by-row

comparisons against the existing QVD version of the dimension. When changes are detected,

new rows are generated with updated values and effective dates, while the previous record is

closed out by setting its EffectiveTo date. This approach ensures that no history is lost and that

all past states of a record remain accessible for analysis.

Maintaining historical tracking does introduce some complexity, including increased storage

needs and more sophisticated data modeling. However, the analytical benefits—such as point-in-

time reporting, regulatory traceability, and customer journey mapping—far outweigh the

overhead. When well-structured, historical data models in Qlik serve as the foundation for

strategic business intelligence, enabling a richer understanding of how entities evolve and how

those changes affect business outcomes.

6. Optimizing QVD Layering for Performance and Maintenance

A well-structured QVD architecture is crucial for maintaining scalable, performant Qlik

applications, particularly when dealing with historical and delta loads. QVD files, being Qlik’s

native and highly optimized storage format, are at the core of efficient data movement and

187 Journal of Science on Integration and Human Development www. grnjournal.us

reusability within Qlik environments. To maximize their effectiveness, developers should adopt

a layered QVD approach that separates raw data ingestion from transformation and presentation

logic.

Typically, this architecture involves three main layers: the Raw QVD Layer, which stores

unmodified data extracted directly from the source systems; the Transform QVD Layer, where

business logic such as calculations, cleansing, and versioning is applied; and the Presentation

Layer, which feeds the final data model used in dashboards. This modularity not only improves

maintainability but also ensures that data lineage is transparent, making debugging and auditing

significantly easier.

When working with historical or delta-loaded data, QVD layering provides additional benefits.

For delta loads, QVDs can be partitioned by date—such as daily, weekly, or monthly—so that

only the relevant partitions are accessed during each load. This approach reduces read times and

allows for selective reprocessing of data in case of errors. Historical QVDs, on the other hand,

are often versioned with timestamps or batch IDs in their filenames, ensuring full traceability of

what data existed at a given moment.

7. Scheduling and Automation Considerations

Effective scheduling and automation are vital for implementing and maintaining delta and

historical loading strategies in Qlik environments. As data volumes grow and business needs

demand more frequent refresh cycles, relying on manual processes or inconsistent scheduling

becomes unsustainable. Automation not only reduces the operational overhead of managing

complex data pipelines but also enhances reliability by ensuring consistent execution of ETL

tasks with minimal human intervention. In the context of delta and historical loading, automation

supports repeatable processes that guarantee timely updates, robust logging, and predictable

outcomes.

The Qlik Management Console (QMC) provides a powerful framework for scheduling reload

tasks. Developers can configure reload frequencies based on business needs—ranging from

hourly updates for real-time dashboards to nightly loads for historical processing. For delta

loads, it is crucial to synchronize job timing with upstream systems, ensuring that the latest

changes are available before attempting incremental extraction. A mismatch here can lead to

missing data or duplication. To mitigate such risks, many developers incorporate “last successful

load” timestamps as dynamic variables, which serve as both filters in the data load and

checkpoints for monitoring.

Qlik Application Automation or external orchestration tools like Control-M, Apache Airflow, or

Azure Data Factory can be used to manage multi-step workflows that span across systems. These

tools enable conditional branching, error handling, and notification logic. For example, if a delta

load fails due to a source system outage, an alert can be triggered, and a fallback load process

can attempt to reprocess the previous state. This ensures data continuity even in the face of

infrastructure disruptions.

Logging mechanisms should also be embedded into the automation pipeline. These can include

writing log tables or QVDs that track the number of records loaded, records rejected, processing

duration, and the exact timestamp of each load. This information can be used for auditing,

troubleshooting, or feeding into monitoring dashboards that give BI administrators real-time

visibility into system health.

8. Real-World Use Case: Pharma Regulatory Reporting

Pharmaceutical companies operate in a heavily regulated environment where data accuracy,

traceability, and auditability are paramount. In such settings, the ability to manage historical data

and perform efficient delta loads becomes essential for complying with standards like FDA 21

CFR Part 11 and GxP. This use case focuses on how a leading pharma organization leveraged

188 Journal of Science on Integration and Human Development www. grnjournal.us

Qlik’s capabilities to meet stringent regulatory requirements while optimizing performance and

data refresh cycles.

The company faced the challenge of managing a vast and dynamic clinical trial data landscape.

Patient records, site metrics, protocol amendments, and investigator updates were all changing

frequently and needed to be reflected in their Qlik dashboards with minimal delay. At the same

time, the business had to maintain an immutable history of these changes to support retrospective

audits and regulatory submissions. A full reload approach was becoming increasingly

unsustainable, as each execution took several hours and frequently led to system timeouts.

To resolve this, the BI team implemented a hybrid architecture combining delta loads for

transactional updates and historical tracking for critical dimension tables. Delta loading was

achieved using modified date fields from the clinical data warehouse. Qlik scripts filtered data

based on the most recent successful load timestamp and appended only the changed records to

the relevant QVDs. Meanwhile, for investigator and protocol data, SCD Type 2 logic was

introduced to preserve past values while tagging each record with EffectiveFrom and

EffectiveTo dates.

To support audit readiness, each QVD generated during the load was timestamped and archived.

Logging QVDs were also maintained, capturing metadata such as row counts, load duration, and

error messages. This information fed into a system monitoring dashboard that alerted

administrators of anomalies. Automation was handled through Qlik’s QMC and integrated with

an enterprise scheduler, ensuring that loads occurred precisely after upstream data refreshes.

9. Common Pitfalls and Troubleshooting Tips

Despite the advantages of implementing delta loads and historical tracking in Qlik, there are

several pitfalls that can compromise data integrity and system stability if not properly addressed.

One of the most common issues arises from inaccurate or inconsistent change detection. If a

timestamp or versioning field in the source system is not reliably updated with every change, the

delta logic may miss records, resulting in incomplete data. Conversely, if the field is too

sensitive—updating for trivial modifications—it may pull in excessive rows, negating the

benefits of incremental loading.

Another challenge is the mishandling of primary keys or surrogate keys during delta processing.

Duplicate keys may be introduced if append logic does not include de-duplication checks,

especially when concurrent updates or delayed ingestion from source systems occur. Hash-based

comparisons can mitigate this risk by comparing entire record states, but they require thoughtful

implementation and performance tuning to avoid bottlenecks in large datasets.

Schema changes in source systems can also disrupt delta or historical logic. For example, if a

field is renamed or a new column is introduced without updating the Qlik script, the load process

may fail or produce inaccurate results. To safeguard against this, developers should implement

schema validation routines and maintain a metadata registry that tracks structural changes across

data sources.

Performance degradation is another potential issue, particularly when historical tracking is

implemented without efficient partitioning or indexing. Loading and comparing entire history

tables during each execution can significantly slow down processing. This can be addressed by

implementing date-based filters or loading only a rolling window of records for comparison

unless a full audit is needed.

10. Conclusion and Best Practices Summary

Managing historical and delta loads effectively is a cornerstone of enterprise-grade BI

implementations, particularly within Qlik applications where performance, traceability, and

agility must be tightly aligned. The integration of these techniques enables organizations to

maintain up-to-date reporting environments while preserving a complete and accurate history of

189 Journal of Science on Integration and Human Development www. grnjournal.us

data changes. By doing so, businesses not only improve the reliability and timeliness of their

insights but also position themselves to meet regulatory demands and analytical expectations

with confidence.

As seen throughout this article, the success of these implementations relies on more than just

technical knowledge—it requires a strategic architectural approach. The foundation starts with

understanding the data landscape, especially the presence of timestamp fields or change

indicators necessary for delta logic. Equally important is the design of historical tracking using

slowly changing dimensions, which must balance granularity and storage considerations without

compromising analytical flexibility.

Qlik’s QVD layering strategy supports this architecture by promoting separation of concerns,

efficient reusability, and scalable transformation logic. Developers should maintain clean

boundaries between raw ingestion, business rule application, and presentation-ready datasets.

This layering also facilitates better error handling and simplifies debugging processes.

Automation through Qlik Management Console or external scheduling tools ensures reliability

and repeatability while reducing manual overhead and the risk of missed updates.

References

1. Cabezas, J., Gelado, I., Stone, J.E., Navarro, N., Kirk, D.B., & Hwu, W.W. (2015). Runtime

and Architecture Support for Efficient Data Exchange in Multi-Accelerator

Applications. IEEE Transactions on Parallel and Distributed Systems, 26, 1405-1418.

2. Harb, H., Makhoul, A., Jaber, A.H., & Tawbi, S. (2019). Energy efficient data collection in

periodic sensor networks using spatio-temporal node correlation. Int. J. Sens. Networks, 29,

1-15.

3. Brahmia, Z., Mkaouar, M., Chakhar, S., & Bouaziz, R. (2012). Efficient Management of

Schema Versioning in Multi-Temporal Databases. Int. Arab J. Inf. Technol., 9, 544-552.

4. Safari, A. (2015). Visualization of E-commerce Transaction Data : USING BUSINESS

INTELLIGENCE TOOLS.

5. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J., & Hussain, A. (2016). Synthesis,

characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology,

Science and Applications, 9, 49 - 67.

6. Faris, H., Aljarah, I., Al-betar, M.A., & Mirjalili, S. (2017). Grey wolf optimizer: a review

of recent variants and applications. Neural Computing and Applications, 30, 413 - 435.

7. Nuaimi, E.A., Neyadi, H.A., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data

to smart cities. Journal of Internet Services and Applications, 6, 1-15.

8. Csurka, G. (2017). A Comprehensive Survey on Domain Adaptation for Visual

Applications. Domain Adaptation in Computer Vision Applications.

9. Farhadi, M., & Mohammed, O.A. (2016). Energy Storage Technologies for High-Power

Applications. IEEE Transactions on Industry Applications, 52, 1953-1961.

10. Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., &

Jasinski, J.B. (2017). Recent advances in synthesis, properties, and applications of

phosphorene. npj 2D Materials and Applications, 1, 1-13.

11. Hand, P., & Kharpate, N. (2015). Qlik Sense® Cookbook.

12. Zhao, Y., Zhou, W., Zhou, X., Liu, K., Yu, D., & Zhao, Q. (2016). Quantification of light-

enhanced ionic transport in lead iodide perovskite thin films and its solar cell

applications. Light, Science & Applications, 6.

