

## Culturally Responsive Physics Teaching: Preparing Teachers for Diverse Classrooms

**Mr. Maheswar Sahoo**

Section Officer, Finance Department Govt. of Odisha

**Abstract:** In an era of increasing classroom diversity, traditional physics instruction—often grounded in Eurocentric and decontextualized approaches—fails to meet the needs of culturally and linguistically diverse learners. This study explores the integration of culturally responsive teaching (CRT) in physics teacher preparation, emphasizing the importance of aligning physics education with students' cultural experiences, identities, and community knowledge. Drawing on sociocultural learning theory and equity-oriented pedagogies, the paper highlights key CRT principles such as building on students' cultural assets, maintaining high academic expectations, and fostering critical consciousness. The research underscores the challenges physics educators face in adopting CRT, including limited teacher preparation, curriculum rigidity, and misconceptions about academic rigor. To address these barriers, the study proposes strategies for embedding CRT into teacher education programs, including reflective practice, community-based learning, and curriculum redesign. By preparing future physics teachers to be culturally responsive, the study contributes to more inclusive, engaging, and effective science education, ultimately aiming to increase representation and success among historically marginalized student populations.

**Keywords:** Culturally responsive teaching, physics education, teacher preparation, diverse classrooms, etc.

### Introduction

Physics education often prioritizes abstract content, mathematical rigor, and objectivity—qualities that may unintentionally alienate students from culturally and linguistically diverse (CLD) backgrounds (Aikenhead, 1996; Medin & Bang, 2014)<sup>1</sup>. In culturally pluralistic societies, this approach limits both access to learning and students' ability to relate physics to their lived experiences. Culturally responsive teaching (CRT), which centers students' cultural knowledge, perspectives, and community-based ways of knowing, offers a powerful framework for bridging this gap (Gay, 2010; Ladson-Billings, 1995)<sup>2</sup>.

Despite the growing advocacy for CRT in general education, its application in physics remains under-theorized. This article presents a conceptual foundation for preparing culturally responsive physics teachers and identifies the pedagogical shifts required to make physics education

<sup>1</sup> Aikenhead, G. S. (1996). Science education: Border crossing into the subculture of science. *Studies in Science Education*, 27(1), 1–52 & Medin, D. L., & Bang, M. (2014). Who's asking?: Native science, Western science, and science education. MIT Press.

<sup>2</sup> Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice (2nd ed.). Teachers College Press. & Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. *American Educational Research Journal*, 32(3), 465–491

equitable and inclusive. As classrooms across the globe become increasingly diverse, the need for culturally responsive teaching (CRT) in all academic disciplines has become more pressing. In the field of physics—traditionally viewed as objective and culturally neutral—the integration of CRT presents both a challenge and an opportunity. Physics, often characterized by abstract laws and mathematical representations, can feel disconnected from the lived experiences of many students, particularly those from culturally and linguistically diverse (CLD) backgrounds. Culturally responsive physics teaching seeks to address this disconnect by aligning physics instruction with students' cultural identities, experiences, and worldviews to foster equity, inclusion, and academic achievement.

“Culturally responsive teaching is a pedagogical approach that recognizes the importance of including students’ cultural references in all aspects of learning” (Gay, 2010)<sup>3</sup>. This approach is particularly vital in physics education, where students from marginalized communities have historically been underrepresented and underserved (Ong et al., 2011)<sup>4</sup>. CRT in physics goes beyond celebrating cultural differences; it involves actively connecting the curriculum to students' backgrounds, valuing diverse ways of knowing, and challenging dominant narratives in science that exclude non-Western contributions.

### **Statement of the Problem:**

Despite growing classroom diversity, physics education remains largely rooted in culturally neutral or Eurocentric approaches that often fail to engage students from diverse cultural and linguistic backgrounds. Many pre-service and in-service physics teachers are not adequately prepared to implement culturally responsive teaching (CRT) strategies, limiting their ability to create inclusive, equitable, and meaningful learning experiences. This gap highlights the urgent need to integrate CRT principles into physics teacher preparation programs to better serve all learners in diverse classrooms.

### **Significance of the Study:**

This study is significant because it addresses the critical need to make physics education more inclusive and equitable in increasingly diverse classrooms. “By focusing on culturally responsive teaching (CRT) in physics, the study highlights how integrating students’ cultural backgrounds and lived experiences into instruction can enhance engagement, conceptual understanding, and academic success—especially for students from underrepresented and marginalized communities”. It also informs teacher preparation programs on how to equip future physics educators with the knowledge, skills, and attitudes needed to teach effectively in multicultural settings. Ultimately, the study contributes to narrowing the achievement gap in STEM education and promotes diversity and representation within the physics and broader scientific community.

**Objectives:** This conceptual article explores the principles of culturally responsive teaching (CRT) and their application in physics teacher preparation.

### **Theoretical Frameworks Underpinning Culturally Responsive Physics Teaching**

**Socio-cultural Learning Theory:** Socio-cultural theories assert that learning is deeply embedded in social, historical, and cultural contexts (Vygotsky, 1978)<sup>5</sup>. Knowledge is co-constructed through interactions with tools, peers, and cultural artifacts. In the physics classroom, this implies that students’ prior experiences, language, and identities must be recognized as legitimate contributors to learning (Nasir et al., 2006)<sup>6</sup>. CRT operationalizes this

<sup>3</sup> Gay, G. (2010). *Culturally responsive teaching: Theory, research, and practice* (2nd ed.). Teachers College Press.

<sup>4</sup> “Ong, M., Wright, C., Espinosa, L. L., & Orfield, G. (2011). Inside the double bind: A synthesis of empirical research on undergraduate and graduate women of color in STEM”. *Harvard Educational Review*, 31(2), 172–209

<sup>5</sup> Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press”.

<sup>6</sup> “Nasir, N. S., Rosebery, A. S., Warren, B., & Lee, C. D. (2006). Learning as a cultural process. *Review of Research in Education*, 30”,

by integrating students' cultural backgrounds into science instruction, fostering meaning-making within relevant social contexts.

**Equity-Oriented Science Education:** Equity in science education goes beyond access to include participation, representation, and empowerment (Lee, 2003)<sup>7</sup>. An equity orientation recognizes that systemic barriers—such as curriculum bias, teacher expectations, and assessment practices—disadvantage CLD students. Culturally responsive physics teaching addresses these issues by situating physics within culturally meaningful narratives, promoting diverse epistemologies, and challenging deficit discourses (Rodriguez & Berryman, 2002)<sup>8</sup>.

**TPACK for Diverse Learners:** The Technological Pedagogical Content Knowledge (TPACK) framework integrates content expertise, pedagogical knowledge, and technology use (Mishra & Koehler, 2006)<sup>9</sup>. When infused with a CRT lens, TPACK can guide physics teachers in selecting culturally relevant tools and methods, such as simulations featuring community-based problems or multilingual instructional materials. This expanded model—sometimes referred to as “Culturally Relevant TPACK” (CR-TPACK)—helps teachers navigate the complex intersection of content, pedagogy, technology, and culture (Hughes et al., 2016)<sup>10</sup>.

### **Principles and Application of Culturally Responsive Teaching in Physics Teacher Preparation**

“Culturally responsive teaching is grounded in the idea that students learn best when their cultural experiences, identities, and worldviews are acknowledged and valued in the classroom” (Gay, 2010)<sup>11</sup>. CRT challenges traditional Eurocentric curricula by affirming diverse cultural perspectives, integrating students’ backgrounds into the learning process, and promoting high academic expectations for all learners (Ladson-Billings, 1995). Key principles of CRT include building on students’ cultural knowledge, fostering critical consciousness, maintaining high expectations, and creating caring, student-centered learning environments (Villegas & Lucas, 2002)<sup>12</sup>.

These principles can be meaningfully applied in physics teacher preparation programs. First, **building on students’ cultural knowledge** means preparing pre-service teachers to design physics lessons that connect to students’ lived experiences. For instance, instead of using abstract, decontextualized problems, teacher candidates can be trained to incorporate culturally relevant scenarios—such as analyzing the energy efficiency of local housing or exploring the physics of community transportation systems. These examples not only make physics more accessible but also validate students’ cultural and social realities (Barton & Tan, 2009)<sup>13</sup>.

Second, CRT emphasizes the importance of **fostering critical consciousness**, encouraging both teachers and students to examine the social and cultural dimensions of science. Physics teacher education should include opportunities for pre-service teachers to reflect on their own positional ties and challenge the assumption that physics is culture-free. Teachers can also be trained to incorporate discussions about equity in science, such as the historical exclusion of women and

---

<sup>7</sup> Lee, O. (2003). Equity for linguistically and culturally diverse students in science education. *Teachers College Record*, 105(3), 465–489.

<sup>8</sup> Rodriguez, A. J., & Berryman, C. (2002). Using socio-transformative constructivism to teach for understanding in diverse classrooms: A beginning teacher's journey. *American Educational Research Association*.

<sup>9</sup> Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017–1054. <https://doi.org/10.1111/j.1467-9620.2006.00684.x>

<sup>10</sup> Hughes, J. E., Morrison, B. R., & Duffy, T. M. (2016). TPACK and the challenge of teaching science with technology. *Tech-Trends*, 60(3), 294–302.

<sup>11</sup> Gay, G. (2010). *Culturally responsive teaching: Theory, research, and practice* (2nd ed.). Teachers College Press.

<sup>12</sup> Villegas, A. M., & Lucas, T. (2002). *Educating culturally responsive teachers: A coherent approach*. SUNY Press.

<sup>13</sup> Barton, A. C., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. *Journal of Research in Science Teaching*, 46(1), 50–73.

minorities in physics, and to highlight contributions from scientists of diverse backgrounds (Aikenhead & Jegede, 1999; Medin & Bang, 2014)<sup>14</sup>.

Third, **maintaining high academic expectations** is a crucial component of CRT. Physics teacher candidates must be equipped to hold all students to high standards while differentiating instruction to meet diverse learning needs. This involves learning how to use multiple modes of instruction—including visual, verbal, and kinesthetic strategies—and assessing student understanding through varied, culturally responsive methods (Gay, 2010)<sup>15</sup>. It also requires a shift from deficit-based thinking to a strengths-based perspective that recognizes the assets students bring to the classroom.

Fourth, **developing caring and student-centered environments** is central to CRT. “Pre-service physics teachers should be trained in building strong relationships with students, understanding their cultural contexts, and creating classrooms where students feel respected and empowered. This includes learning how to communicate effectively across cultures, collaborate with families and communities, and create a safe space for inquiry and dialogue” (Sleeter, 2001)<sup>16</sup>.

### Why Physics Teaching Requires a CRT Approach

Physics, traditionally viewed as universal and culture-free, often marginalizes students who do not conform to dominant norms of communication, cognition, and behavior (Aikenhead & Jegede, 1999). This cultural dissonance can result in lower engagement, underperformance, and even the rejection of science identities among mineralized students (Ong et al., 2011).

CRT in physics challenges these assumptions by:

- **Acknowledging the cultural nature of science:** Scientific practices are historically and socially constructed, often reflecting Eurocentric worldviews.
- **Connecting physics to students' lived realities:** Contextualizing physics problems around community issues (e.g., energy access, environmental justice) increases relevance and ownership.
- **Broadening representation:** Introducing diverse physicists and science contributors helps challenge the narrative that physics belongs only to a privileged few.

### Challenges in Preparing Culturally Responsive Physics Teachers

Despite growing interest, teacher preparation programs often struggle to effectively integrate CRT into physics education. Several challenges persist:

**Limited Exposure to Diverse Learners:** Many pre-service teachers, especially those in predominantly white institutions, lack experience working with CLD students. Without meaningful field placements or guided reflections, they may default to teaching approaches that ignore cultural variation (Sleeter, 2001)<sup>17</sup>.

**Content-Pedagogy Tension:** Physics educators may fear that focusing on cultural relevance compromises disciplinary rigor. This dichotomy, however, is false: cultural relevance and content depth are not mutually exclusive (Barton & Tan, 2009)<sup>18</sup>. Teachers need support in designing instruction that is both culturally grounded and scientifically robust.

<sup>14</sup> Aikenhead, G. S., & Jegede, O. J. (1999). Cross-cultural science education: A cognitive explanation of a cultural phenomenon. *Journal of Research in Science Teaching*, 36(3), 269–287.

<sup>15</sup> Gay, G. (2010). *Culturally responsive teaching: Theory, research, and practice* (2nd ed.). Teachers College Press

<sup>16</sup> Sleeter, C. E. (2001). Preparing teachers for culturally diverse schools: Research and the overwhelming presence of Whiteness. *Journal of Teacher Education*, 52(2), 94–106.

<sup>17</sup> Sleeter, C. E. (2001). Preparing teachers for culturally diverse schools: Research and the overwhelming presence of Whiteness. *Journal of Teacher Education*, 52(2), 94–106.

<sup>18</sup> Barton, A. C., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. *Journal of Research in Science Teaching*, 46(1), 50–73.

**Curriculum Rigidity:** National physics curricula and standardized assessments often constrain flexibility. Teachers may feel pressured to “cover content” rather than adapt lessons to students’ contexts. Structural change is needed to allow space for CRT practices in physics instruction (Banks & Banks, 2019)<sup>19</sup>.

**Preparing Teachers for CRT in Physics: Conceptual Strategies:** To address these challenges, physics teacher education programs must adopt the following conceptual strategies:

**Integrate CRT Throughout Teacher Education:** CRT should not be relegated to isolated multicultural courses. Instead, culturally responsive principles must be woven into physics methods, assessment design, and practicum experiences (Villegas & Lucas, 2002)<sup>20</sup>. For example, lesson planning should include guiding questions such as: *Whose knowledge is centered? How do students’ cultural experiences inform this lesson?*

**Encourage Critical Self-Reflection:** Teacher candidates must reflect on their own cultural identities, biases, and positionalities. Tools such as equity audits, reflective journals, and case study analyses can help uncover assumptions and support identity development as equity-minded educators (Zeichner, 2010)<sup>21</sup>.

**Promote Community-Based Physics Learning:** Partnering with local communities enables pre-service teachers to design physics instruction around real-world concerns. Examples include energy efficiency in neighborhood housing or the physics of local transportation systems—providing culturally relevant contexts for inquiry and problem-solving.

**Conclusion:** Preparing physics teachers for culturally diverse classrooms requires a paradigm shift—one that views culture not as a variable to be managed but as a resource to be celebrated. Culturally responsive physics teaching challenges long-held assumptions about scientific neutrality, fosters inclusive pedagogy, and equips teachers to meet the needs of all learners. Through intentional preparation, critical reflection, and contextualized practice, physics education can become a tool for empowerment, equity, and transformation.

## References

1. Aikenhead, G. S. (1996). Science education: Border crossing into the subculture of science. *Studies in Science Education*, 27(1), 1–52.
2. Aikenhead, G. S., & Jegede, O. J. (1999). Cross-cultural science education: A cognitive explanation of a cultural phenomenon. *Journal of Research in Science Teaching*, 36(3), 269–287.
3. Banks, J. A., & Banks, C. A. M. (2019). *Multicultural education: Issues and perspectives* (10th ed.). Wiley.
4. Barton, A. C., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. *Journal of Research in Science Teaching*, 46(1), 50–73.
5. Gay, G. (2010). *Culturally responsive teaching: Theory, research, and practice* (2nd ed.). Teachers College Press.
6. Hughes, J. E., Morrison, B. R., & Duffy, T. M. (2016). TPACK and the challenge of teaching science with technology. *TechTrends*, 60(3), 294–302.
7. Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. *American Educational Research Journal*, 32(3), 465–491.

<sup>19</sup> “Banks, J. A., & Banks, C. A. M. (2019). *Multicultural education: Issues and perspectives* (10th ed.). Wiley”.

<sup>20</sup> “Villegas, A. M., & Lucas, T. (2002). Educating culturally responsive teachers: A coherent approach. SUNY Press”.

<sup>21</sup> “Zeichner, K. (2010). Rethinking the connections between campus courses and field experiences in college”- and university-based teacher education. *Journal of Teacher Education*, 61(1–2), 81–99. <https://doi.org/10.1177/0022487109347671>

8. Lee, O. (2003). Equity for linguistically and culturally diverse students in science education. *Teachers College Record, 105*(3), 465–489.
9. Medin, D. L., & Bang, M. (2014). *Who's asking?: Native science, Western science, and science education*. MIT Press.
10. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teacher knowledge. *Teachers College Record, 108*(6), 1017–1054. <https://doi.org/10.1111/j.1467-9620.2006.00684.x>
11. Nasir, N. S., Rosebery, A. S., Warren, B., & Lee, C. D. (2006). Learning as a cultural process. *Review of Research in Education, 30*, 1–24.
12. Ong, M., Wright, C., Espinosa, L. L., & Orfield, G. (2011). Inside the double bind: A synthesis of empirical research on undergraduate and graduate women of color in STEM. *Harvard Educational Review, 81*(2), 172–209.
13. Sleeter, C. E. (2001). Preparing teachers for culturally diverse schools: Research and the overwhelming presence of Whiteness. *Journal of Teacher Education, 52*(2), 94–106.
14. Villegas, A. M., & Lucas, T. (2002). *Educating culturally responsive teachers: A coherent approach*. SUNY Press.
15. Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press.